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We studied a modified reaction-diffusion model theoretically by coupling two ideal excitable media systems.
In the simulated homogeneous system, we observed the propagation of reaction-diffusion wave trains that
required no external force after the initial stimulation. We investigated the dependence of the system’s oscil-
lation patterns on model parameters, and we discussed the influence of the different dynamic constants of the
individual coupled systems on the dynamics of the coupled systems. Some complex two-dimensional patterns
generated by our model are shown. We also found similar phenomena in the models for catalytic CO oxidation
on Pt�110�, and for cardiac tissue.
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I. INTRODUCTION

Pattern formation and wave evolution have attracted a
great deal of attention in physics, chemistry, and biology
because they are important to understanding the morphogen-
esis and other functional aspects of soft condensed-matter
systems �1�. Excitable media systems are typically chemical
systems that generate spirals and pulses �2�, and are used to
model the Belousov-Zhabotinsky reaction �3–6�, the aggre-
gation of slime molds �7�, and the behaviors of the heart
muscle �8� and cardiac tissue �9�. To further understand these
systems, their pattern formations have been studied in re-
sponse to external forcing �10–17�, and to local �18�, nonlo-
cal �19�, and global �20� feedback mechanisms.

All complex systems in nature are composites of many
simple subsystems, and thorough research into these simple
systems can lead to an understanding of the larger ones.
These subsystems are rarely independent—on the contrary,
they interact with each other. The coupling of several ideal
systems may create new characteristics. The importance of
this coupling effect, then, should be considered. For ex-
ample, if there are two predator-prey systems in which the
two predators also prey on each other, interesting population
dynamics may appear.

Recently, coupled nonlinear systems have been widely
studied, theoretically and experimentally. In coupled excit-
able media systems, for example, Hildebrand et al. �21� ex-
perimentally and theoretically investigated two locally
coupled domains of Belousov-Zhabotinsky systems, and ob-
served beautiful traveling-wave patterns. Li and Lang �22�
studied the spatiotemporal dynamics of a one-way coupled
FitzHugh-Nagumo system and showed the effects of the cou-
pling effect. Karnatak et al. �23� studied identical coupled
oscillators and observed amplitude death phenomena.

In this paper, we couple two reaction-diffusion systems in
homogeneous excitable media, and we find that periodic
wave patterns need no external influence after the initial

stimulation. We also investigate the coupling effect in the
models for catalytic CO oxidation on Pt�110�, and in models
for cardiac tissue, and find similar periodic patterns in these
two models.

This paper is organized as follows: The coupled model is
proposed and simulated in Sec. II. The observation results
for the catalytic CO oxidation on Pt�110� and the cardiac
tissue models are described in Sec. III. Finally, conclusions
and discussions are given in Sec. IV.

II. COUPLED MODEL

A. Model equations

We adopted the simple ideal model as which was used by
Barkley �2�. The two activator variables, u1, u2, and the two
inhibitor variables, v1, v2, in our model obey the following
equations:

�u1

�t
=

1

�1
u1�1 − u1��u1 − �v1 + b1�/a1� + D1�

2u1, �1�

�v1

�t
= u1 − v1 − Kv1v2, �2�

�u2

�t
=

1

�2
u2�1 − u2��u2 − �v2 + b2�/a2� + D2�

2u2, �3�

�v2

�t
= u2 − v2 − Kv1v2. �4�

All the parameters and constants are dimensionless. The con-
stants �1,2 are the ratio of the characteristic time scales of the
activator and inhibitor variables; D1,2 are diffusion constants;
and a1,2 and b1,2 represent, respectively, the slope of the u1,2
nullcline and the excitation threshold. These two systems are
coupled through the inhibitor variables v1 and v2 with the
coupling constant K.*zhangsl@mail.xjtu.edu.cn
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B. Patterns observed in the model by one-dimensional
simulation

To investigate the systems’ spatiotemporal dynamics, the
parameters K, a1,2, and b1,2 were varied. We used the explicit
Euler method with a five-point �for two-dimensional �2D�� or
three-point �for one-dimensional �1D�� Laplacian and no-flux
boundary conditions for our numerical calculations.
Throughout the following simulations a time step of 0.001
and a space step of 1 were used.

Obviously, if K=0, the whole system reduces to two in-
dependent systems, both of which obey the standard
reaction-diffusion model as discussed in Ref. �2�. For K�0,
in the case of the head-on collision of the u1,2 and v1,2 pulses,
the two inhibitor variables, v1 and v2, begin to interact, and
they decrease within the regions where they are in contact.
Unlike the case of single-pulse generation in the single
reaction-diffusion system �2�, some interesting phenomena
consequently appear in these contact regions. At first, for

simplicity, we set a1=a2=a=0.4, b1=b2=b=0.003, �1=�2

=�=0.0085, and D1=D2=D=1.
Figures 1–4 show the one-dimensional solution �where

�2=d2 /dX2� of Eqs. �1�–�4�. Initially, the four variables were
set to zero except u1 near the left extremity and u2 near the
right extremity �the initial stimulation�. The two pulses of u1

and u2, which are followed by two v1 and v2 pulses, then
move toward each other and make contact in the region
around X=0 �we call this region the contacting region�.

Typically, three different spatiotemporal patterns �indi-
cated by I, II, and III in Figs. 1 and 2� are observed with
different K values. For very small K values, the u1 pulse and
u2 pulse simply cross each other �Fig. 1�I� and Fig. 2�I��. For
larger K values, a pulse generator appears in the contacting
region and produces stable wave trains where the pulses col-
lide �Fig. 1�II� and Fig. 2�II��. For pattern III, where K values
are much larger, the contacting region also becomes a pulse
generator. Now, however, the pulse generator region expands
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FIG. 1. �Color online� Collision of two single
pulses for �I� K=0, �II� K=10, �III� K=20. Time
is t=0, 6, and 12 from left to right. Parameters
are a=0.4, b=0.003, �=0.0085, and D=1. Un-
less otherwise indicated, all the following figures
use these same parameter values as this figure,
and all the parameters are dimensionless.

FIG. 2. Spatiotemporal patterns caused by the
collisions for �I� K=0, �II� K=10, and �III� K
=20. From left to right are the patterns of u1

+u2, u1, and u2. The lines indicate the contour
lines of u1+u2=0.1, u1=0.1, and u2=0.1,
respectively.
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�Fig. 1�III� and Fig. 2�III�, unlike in pattern II whose pulse
generator region is localized�.

We show the process of the formation of pattern II in
Fig. 3. After the two initial pulses of u1 �labeled A in Fig. 3�
and u2 move toward each other, they make contact in the
region around X=0 �Figs. 3�a� and 3�b��. Because v1 and v2
will interact in this contacting region �X=0; see the black
and red dashed lines in Figs. 3�b� and 3�c� for details�, the
concentration of v1,2 begins to decrease. In this case, u1 and
u2 are not inhibited. They regrow in the contacting region
�see Fig. 3�c��. The left part of pulse A regrows because the
concentration of v1 in this region is decreased by v2. Conse-
quently, pulse A is split into two pulses at the point where v1
reaches a certain high value �that is, when v1�a−b, to be
discussed in the next subsection�. The new u1 pulse B ap-
pears, and moves toward the left. When pulse B passes the
contacting region, its right portion regrows and forms a new
pulse C, which moves toward the right. There is always a u1
pulse that moves back and forth in the contacting region, and
continually emits pulses. The whole system stays in the
stable state as the pulses fill the system throughout �Fig. 1�II�
and Fig. 2�II��, as in Refs. �24,25�.

The temporal periodicity �after a short period of adapta-
tion in which the system reaches the stable state, shown

in the inset of Fig. 6� of three space points in our model
is shown in Fig. 4�a�. The solid red, blue dashed, and
solid black lines represent the temporal behavior of points
X=18, X=−18, and X=0, respectively, where t=0 is
the point at which the systems reach the stable state.
The concentration of u1 at these space points undergoes pe-
riodic oscillations, while at the point X=0 it fluctuates very
little—its value is always above 0.9 �indicated by the black
line around u1�X�=1 in Fig. 4�a��. In Fig. 4�b� we show the
u1−v1 cycle orbit at point X=−18, which follows the dynam-
ics described by the standard reaction-diffusion model in
Ref. �2�. �As described in detail in Ref. �2�, while u , v
stay at the state of �u=0, v=0� at first, if u has a pertur-
bation larger than b /a, u will rapidly increase to the maxi-
mum value 1, as � is very small. Then, v will increase
as u−v�0. When v is larger than �a−b�, which makes
1− �v+b� /a�0, u will rapidly decrease back to 0 and, con-
sequently, v will decrease to 0 exponentially.� In contrast to
the standard model, Fig. 4�c� shows that the u1−v1 relation-
ship at the point X=0 is different. The coupled system stays
near a fixed point �u1�1,v1�0.27�, indicating that this
coupled system reaches a different stable state at the contact-
ing region.
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FIG. 3. �Color online� The distribution of u1

�solid black line�, u2 �solid red line�, v1 �black
dashed line�, and v2 �red dashed line� at different
times. The black and red arrows above the curve
show the direction of motion of the u1 and u2

waves.

FIG. 4. �Color online� �a� The concentration
of u1 at the three points X=18 �solid red line�,
X=−18 �blue dashed line�, and X=0 �solid black
line� as a function of time t. �b� The u1−v1 cycle
orbit at point X=−18. �c� The u1−v1 cycle orbit
at point X=0.
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C. Linear stability analysis and numeric analysis

The fixed point �u1g ,v1g ,u2g ,v2g� of coupled model
�1�–�4� occurs when Eqs. �5�–�8� all equal 0 �neglecting the
diffusion terms�,

du1

dt
=

1

�
u1g�1 − u1g��u1g − �v1g + b�/a� , �5�

dv1

dt
= u1g − v1g − Kv1gv2g, �6�

du2

dt
=

1

�
u2g�1 − u2g��u2g − �v2g + b�/a� , �7�

dv2

dt
= u2g − v2g − Kv1gv2g. �8�

There are five solutions: A: �u1g=0,v1g=0,u2g=0,v2g
=0�, B: �u1g=1,v1g=1,u2g=0,v2g=0�, C: �u1g=0,v1g
=0,u2g=1,v2g=1�, D: �u1g= �v1g+b� /a ,u1g=v1g
+Kv1gv2g ,u2g= �v2g+b� /a ,v2g=v1g,�, and E: �u1g=1,v1g
+Kv1gv2g=1,u2g=1,v2g=v1g�. Solution A is a stable fixed
point for both the coupled model and the single model in
Ref. �2�. Solutions B, C, and D are unstable because small
perturbations of u1g or u2g will make u1 or u2 rapidly move
away from that fixed point. Solution E maybe stable. We will
discuss solution E in more detail below.

First, though, let us focus on the contacting point �X=0�.
Because of the symmetry of the u1,2 and v1,2 pulses at this
point, u1 always equals u2 and v1 always equals v2 at X=0.
Then Eqs. �5�–�8� can be rewritten as

du

dt
=

1

�
u�1 − u��u − �v + b�/a� , �9�

dv
dt

= u − v − Kv2. �10�

The fixed point E of Eqs. �5�–�8� then becomes �u=1
�uE ,v= ��1+4K−1� /2K�vE�. Assuming small perturba-
tions �u�t� and �v�t� are added to the solution

u�t� = uE + �u�t�, v�t� = vE + �v�t� . �11�

Inserting Eq. �11� into Eqs. �9� and �10� and linearizing the
equations for small �u and �v, we obtain the variational
equations for the perturbations

d�u

dt
= −

1

�
uE�uE − �vE + b�/a��u , �12�

d�v
dt

= �u − �1 + 2KvE��v . �13�

Assuming �u and �v have the form of �u�u0 exp��t� and
�v�v0 exp��t�, and inserting them into Eqs. �12� and �13�,
we can obtain the following matrix equations:

	− 1
�uE�uE − �vE + b�/a� − � 0

1 − �1 + 2KvE� − �

	u0

v0

 = 0.

�14�

Hence the characteristic equation is � 1
�uE�uE− �vE+b� /a�

+����1+2KvE�+��=0 and then

� = − 1
�uE�uE − �vE + b�/a� , � = − �1 + 2KvE� . �15�

If K�0, vE= ��1+4K−1� /2K�0. Therefore, if uE and vE
satisfy

uE � 1 � �vE + b�/a ⇒ vE � a − b , �16�

� will have negative values, and �uE ,vE� is stable.
For K=10, uE=1, and we can get vE�0.27, which is the

value we observed in Fig. 4�c�. So, the coupled system stays
in this stable state at the contacting point. This is why u1,2
values are always very high at the contact point. Taking ad-
vantage of the diffusion term, they can excite the surround-
ing media, on the side where the corresponding v1 �or v2� is
lower, to generate new pulses that travel in the opposite di-
rection from the former pulses.

As discussed earlier, for very small K values, vE

= ��1+4K−1� /2K�a−b�0.4. The coupled system cannot
reach the �uE ,vE� state, for when v1,2�a−b, u1,2 will rapidly
be decreased to 0, pushing u1,2 and v1,2 back to the �0,0�
state. In this case, the coupled system generates pattern I,
which mainly shows the properties of the single model in
Ref. �2�. For proper larger K values satisfying K� �1− �a
−b�� / �a−b�2, which equals

vE = ��1 + 4K − 1�/2K � a − b , �17�

the coupled system can easily reach the �uE ,vE� state around
the contacting region. However, if the value of vE is close to
the value of �a−b�, because v1 and v2 have different values
outside the contacting region �see Fig. 3�b�–3�f��, and be-
cause Kv1v2 is much smaller when either v1 or v2 is very
small, the larger one of v1,2 can easily increase to a value
larger than �a−b�. This pushes the corresponding u−v back
to the �0,0� state. The points then can reach the �uE ,vE� state
are now restricted in a limited domain around the contacting
point, and they can have only small fluctuations due to the
diffusion of u1,2. The points outside this domain show the
dynamic orbit in Fig. 4�b�, which is the typical orbit in Ref.
�2�. With these K values, pattern II appears.

For very large K values, Kv1v2 plays the main role in the
coupled system. Also vE is so small that the �uE ,vE� state is
very easy to reach. Then the domain that fills up with points
in the �uE ,vE� state expands, and pattern III appears.

We have plotted the numerically calculated phase dia-
grams of the a−K plane and the b−K plane in Figs. 5�a� and
5�b�, respectively. When parameters locate in the region un-
der the line K=Kmin, pattern I appears. When parameters
locate in the region between the line K=Kmin and the line
K=Kmax, pattern II appears. When parameters locate in the
region above the line K=Kmax, the coupled system generates
pattern III. Kmin

� is the minimum value determined by Eq.
�17�, and Kmin

� = �1− �a−b�� / �a−b�2. We find that Kmin
� lines

have a similar shape to the corresponding Kmin lines in both
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Figs. 5�a� and 5�b�. That the computed Kmin values are a little
larger than Kmin

� indicates that the vE cannot be very close to
�a−b� if the �uE ,vE� state is to be reached in the coupled
system.

We have calculated the periodicity of the system to deter-
mine the effects of K. The inset of Fig. 6 shows, when K
=7, for example, the time length between two following u1
wave pulses approaching the same space point in the system.
Horizontal coordinate N represents the Nth wave pulses of
the wave train approaching this space point, beginning when
two u1 and u2 pulses first contact each other. Vertical ordi-
nate T represents the time length between the Nth and
�N+1�th wave pulses approaching this space point. In this
inset, we find that after a decreasing �adapting� process, the

time length between two neighboring wave pulses finally
settles at a fixed value, which is the system’s periodicity T.
We show T vs K in Fig. 6. We find that for K�6.06, the two
traveling waves cross each other without generating oscilla-
tions in their contacting regions �pattern I�. For K�12.55,
pattern III appears, and all the points in the simulation region
eventually reach the state of �uE ,vE� at last. For 6.06�K
�12.54 there are stable oscillations generated in the contact-
ing region �pattern II�. The curve for 12.55�K�13.44 in
Fig. 6 is shown to illuminate the difference between the pat-
tern II and pattern III. As described in the former section,
when the value of K is in this range, the system can generate
wave trains but the domain around the contacting point
which reach the �uE ,vE� state expands. Because of this ex-
panding domain, the periodicity T has a smaller value than
when K=12.55. This explains the small drop in the curve at
the point K=12.55 in Fig. 6. The periodicity T, when
12.55�K�13.44, is measured before the expanding domain
reaches the fixed space point that is used to compute the
number of wave trains.

As shown in Figs. 1 and 3, all of the four variables u1,2
and v1,2 are nonzero in the contacting region. As K increases,
v1 reacts with v2 at a larger rate. For relatively large values
of K, this reaction effectively weakens the inhibition effect of
the inhibitors �v1 and v2� to their corresponding activators
�u1 and u2�. The regrowing velocity of the u1 and u2 waves
increases, resulting in a decrease in periodicity �see Fig. 6 for
6.06�K�10.26�. However, for large enough values of K,
v1, and v2 react with each other so quickly that one is anni-
hilated before either variable can obviously affect the re-
growing of u1 or u2. This results in an increase in T as K
increases �see Fig. 6 for 10.26�K�12.55�. Eventually,
around K=11.36, the periodicity T has an abrupt jump in
value. We have no analytical explanation for this jump point
as yet.

D. Dynamics when the two coupled models are different

It is very difficult to find two systems with the same dy-
namic constant, so we need to consider the differences of the
two coupled reaction-diffusion systems. In our simulation,
we found that if b1�b2, D1�D2, or �1��2, then the u1 and
u2 waves have different speeds of propagation. Because the
speeds of these two kinds of activator pulses are different, as
the pulses eventually travel a sufficiently long distance, the
u1 �or u2� periodic waves are caught by the trailing u2 �or u1�
waves. The regions of their coincidence act as new sources
for generating periodic waves, making the system’s oscilla-
tion behaviors very confused.

However, in this situation, the system’s periodic behavior
is size limited, as is also the case in the nature. The finite
volume of natural systems ensures that this two-system
coupled system can generate persistent periodic waves—the
only essential condition is that before the waves reach the
edges of these systems, they should not catch each other. In
Fig. 7�a�, we fix a1=a2, �1=�2, and D1=D2, and vary only b2
to measure the relationship between the system’s length L
and the maximum difference �b ��b=b2−b1� that allows the
system to generate persistent periodic waves. In the same
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way, we fix other parameters and vary only �2 or D2 to
calculate the relationship between L and the maximum dif-
ference �� and �D, respectively. These results are plotted in
Figs. 7�b� and 7�c�. From Fig. 7, we see that as the simulated
system’s length is increased, the two coupled systems must
be similar to ensure the generation of persistent periodic
waves.

The difference of parameters a1 and a2 causes another
problem in the coupled system. If a1�a2, then the frequen-
cies of generating new u1 and u2 pulses in the contacting
region are different. After a sufficient time, u1 and u2 waves
are generated in the same place and move in the same direc-
tion. Then, they contact each other outside the former con-
tacting region. As the new contact region generates other u1,2
pulses, the periodic behaviors of the whole system are de-
stroyed. To prolong the time of the system’s periodic behav-
ior, the maximum difference �a ��a=a2−a1�, which can
generate periodic waves in a limited time, should be de-
creased.

We also find that differences in a1 and a2 greatly affect the
minimum and maximum values of K that can generate peri-
odic waves. In Fig. 8, we fix other parameters, and then plot
the relationship between �a and Kmin, and �a and Kmax in a
fixed observation time t=20. In this time, beginning at the
first contact of the u1 and u2 pulses, the system can generate
periodic wave trains with K in the range of Kmin�K�Kmax.
We see that changes to �a cause great changes to the differ-
ence between Kmin and Kmax �in contrast with Fig. 5�a�, for
example�. In our simulations, we also find that if a2 is larger
�smaller� than a1, then the system’s oscillation time can be
prolonged by increasing �decreasing� D2 or decreasing �in-
creasing� �2. This provides a means of selecting two similar
reaction-diffusion systems if one wants to couple them and
achieve stable oscillation conditions.

E. Two-dimensional patterns

In two-dimensional systems �where �2=�2 /�X2+�2 /�Y2�,
the coupled model can generate many more complex and

interesting patterns. In Figs. 9 and 10, we show two different
pattern evolutions for two different initial conditions. In Fig.
9, the four points grow as four target waves before they meet
each other. When two u1 �or two u2� activator waves contact
each other, the waves vanish because they are followed by
two v1 �or two v2� inhibitor waves. When the two activator
waves are u1 and u2 waves, the waves begin to oscillate in
their contacting regions, to generate periodic waves and cre-
ate complex patterns, as shown in Fig. 9. In Fig. 10, the
initial condition leads to yet another complex pattern. All six
subgraphs of these two figures have a time interval of 20.
The patterns generated by our 2D coupled system are more
complex because the initial patterns have their own shapes.
They have different contact times in different contact re-
gions. These interesting patterns are created by their different
oscillation behaviors.

III. GENERALITY OF THIS COUPLING EFFECT

A. Coupled catalytic CO oxidation on Pt(110) model

To check whether this coupling effect is model dependent,
we apply our method to the models for catalytic CO oxida-
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FIG. 7. �a� The relationship between the sys-
tem’s length L and the maximum difference �b
��b=b2−b1� that can generate pattern II. The pa-
rameters are K=10, a1=a2=0.4, b1=0.003, �1

=�2=0.0085, and D1=D2=1. �b� The relationship
between the system’s length L and the maximum
difference �� ���=�2−�1� that can generate pat-
tern II. The parameters are the same as in �a�, but
also with b1=b2=0.003 and �1=0.0085. �c� The
relationship between the system’s length L and
the maximum difference �D ��D=D2−D1� that
can generate pattern II. The parameters are the
same as in �a� but also with D1=1.
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tion on Pt�110� �26–29� and cardiac tissue �30,31�. The
coupled catalytic CO oxidation on Pt�110� model we used is

�u1

�t
=

1

�
u1�1 − u1��u1 − �v1 + b�/a� + D�2u1, �18�

�v1

�t
= f�u1� − v1 − Kv1v2, �19�

�u2

�t
=

1

�
u2�1 − u2��u2 − �v2 + b�/a� + D�2u2, �20�

�v2

�t
= f�u2� − v2 − Kv1v2, �21�

where f�u�=0 if 0�u�1 /3; f�u�=1−6.75u�u−1�2 if 1 /3
�u�1; and f�u�=1 if u�1. Using the parameters in

�26–29�, we get the phase diagram in the K−a and K−b
planes, shown in Figs. 11�a� and 11�b� respectively, and we
show which parameter values lead to the generation of pat-
terns I, II, and III.

We also compute the relationship between K and the sys-
tem’s periodicity T. This result is plotted in Fig. 12�a�. Be-
cause the value of a in �26–29� is 0.84, much larger than that
in our former Barkley-type model in which a=0.4, the range
of parameter K that can generate steady oscillation waves is
more narrow �as predicted in Fig. 5�a��. We show, in Figs. 11
and 12�a�, that the oscillation behavior also exists in the
model for catalytic CO oxidation on Pt�110�. Considering
that the main difference between this and the Barkley-type
model is the function f�u�, we use the parameter values of
the Barkley-type model with this model in Fig. 12�b� to plot
the curve T�K�. It is because of the function f�u� that Fig.
12�b� differs from Fig. 6. The range of K that can generate
steady wave trains is a little smaller than that in Fig. 6, and

FIG. 9. The spatiotemporal evolution from the
initial condition subgraph t=0 �For the middle
point, u1 is nonzero. For the three surrounding
points, u2 is nonzero�.

FIG. 10. The spatiotemporal evolution from
the initial condition subgraph t=0 �Clockwise
from the top, for the first, third, and fifth points,
u1 is nonzero. For the other three points, u2 is
nonzero�.
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so is the range of the periodicity T. The main shape of these
two figures is the same, though, and they follow almost the
same dynamic behaviors.

B. Coupled cardiac tissue model

We couple the cardiac tissue model as follows:

�e1

�t
= �2e1 − p0�f�e1� + g1� , �22�

�g1

�t
= ��e1,g1��pe1 − g1 − Kg1g2� , �23�

�e2

�t
= �2e2 − p0�f�e2� + g2� , �24�

�g2

�t
= ��e2,g2��pe2 − g2 − Kg1g2� , �25�

where f�e�=C1e when e�ea; f�e�=−C2e+a when ea�e
�eb; f�e�=C3�e−1� when e�eb, and ��e ,g�=�a when e
�eb; ��e ,g�=�b when e�eb; ��e ,g�=�c when e�ea and g
�ga. If p0=1, then the whole system is the same as that in
�30,31�. However, we find that the system cannot generate
pattern II until p0	1 �for K�0.4, it can generate pattern
III�. In other words, the reaction velocity of the activators
should be much larger than the inhibitors’. Then, the excit-
able system can generate steady oscillations. In Fig. 13�a� we
show the phase diagram in the p0−K plane. Pattern II ap-
pears in a narrow region. When p0=15, for example, the
relationship between coupling constant K and the system’s
periodicity T is shown in Fig. 13�b�. We find that for 0.21
�K�1 the system can generate steady wave trains, and that
the periodicity T is much larger than in models �1�–�4� and
�18�–�21�. Unlike the former two models, the T�K� is a con-
tinuous function with no jump points. Significantly, both of
models �18�–�25� exhibit the coupling effect. Both models
also demonstrate the universality of a spontaneous wave gen-
erator in excitable media.
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FIG. 11. Phase diagrams of the catalytic CO oxidation on
Pt�110� model. �a� Phase diagram in the a−K plane. Parameters are
�=0.01, D=1, with b fixed to be 0.07. �b� Phase diagram in the b
−K plane. Parameter a is fixed to be 0.84.
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FIG. 12. The periodicity T vs K of the model for catalytic CO
oxidation on Pt�110�. �a� Parameters are a=0.84, b=0.07, �=0.01,
and D=1, as in Refs. �26–29�. �b� Parameters are a=0.4, b
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IV. CONCLUSION AND DISCUSSION

In this paper, we propose a coupled reaction-diffusion
model based on the general model in excitable media. In the
region where two coupled traveling waves make contact, a
wave generator is observed that produces periodic wave
trains that need no external force after the initial stimulation.
Complex two-dimensional patterns are found in the simula-
tion. We discuss the influence of the coupling constant, the
systems’ parameters, and the influence of the two systems’
different dynamic constants on the dynamic behavior of the
coupled system. We measure the maximum differences of
each key parameter for finite system sizes or finite reaction
times. Also, we observe that this coupling effect is not model
dependent. It is found in the model for catalytic CO oxida-
tion on Pt�110�, as well as in the cardiac tissue model. As
shown by phenomena from the three models in our paper,

this coupling effect can be verified by finding two similar
activator-inhibitor systems in which the two inhibitors can
react with each other and vanish at a proper reaction velocity.
Since excitability is ubiquitous in all areas of science, we
hope our work will contribute to the exploration of more
complex patterns in nature.
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